本书理论完备,涵盖主流经典强化学习算法和深度强化学习算法;实战性强,基于Python、Gym、TensorFlow 2、AlphaZero等构建,配套代码与综合案例。全书共12章,主要内容如下。 第1章:介绍强化学习的基础知识与强化学习环境库Gym的使用,并给出完整的编程实例。
强化学习作为人工智能领域的重要分支,已经在各种领域展现出了巨大的潜力。为了帮助开发者更好地理解和应用强化学习算法,Python库Gym应运而生。Gym提供了一个开放且易于使用的环境,供开发者进行强化学习算法的开发、测试和评估。本文好学编程将深入 ...
1. 深度强化学习 DRL(Deep Reinforcement Learning)属于机器学习的一个子领域,将深度学习模型(神经网络)应用于强化学习。 2. 什么是强化学习?类似大人教小孩子,训练狗,做的差不多或完全正确就给奖励,然后不停地强化。 3. 强化学习需要做出决策和采取动作 ...
说明:如果访问 GitHub 比较慢的话,可以关注我的知乎账号(Python-Jack),上面的“从零开始学Python”专栏(对应本项目前 20 天的内容)比较适合初学者,其他的专栏如“数据思维和统计思维”、“基于Python的数据分析”、“说走就走的AI之旅”等也在持续更新中 ...
你在用了吗? OpenAI 创建的 Gym 是开源的 Python 库,通过提供一个用于在学习算法和环境之间通信的标准 API 以及一组符合该 API 的标准环境,来开发和比较强化学习(DL)算法。自推出以来,Gym 的 API 已经成为了领域标准。 目前,在 Gym 的项目主页,Star 量已经 ...
强化学习是一种重要的机器学习方法,在智能体及分析预测等领域有许多应用。 《Python强化学习实战:应用OpenAI Gym和TensorFlow精通强化学习和深度强化学习》共13章,主要包括强化学习的各种要素,即智能体、环境、策略和模型以及相应平台和库;Anaconda、Docker ...
导语:书中包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划KT条件、无约束优化方法、约束优化方法、整数规划和动态规划等内容。 强化学习是一种重要的机器学习方法,在智能体及分析预测等领域有许多应用。 《Python强化 ...
一些您可能无法访问的结果已被隐去。
显示无法访问的结果